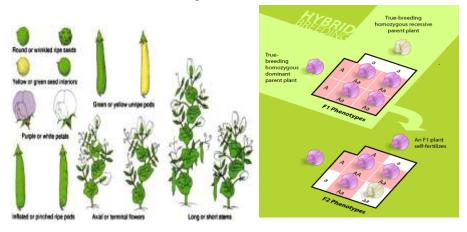

13/10/2012

Evolusi Teknik Molekuler untuk Keperluan Pemuliaan Tanaman

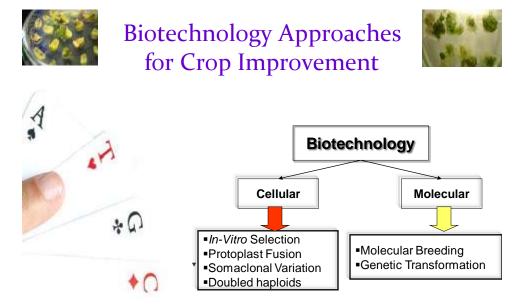
Rudy Lukman

9 Oktober 2012

The Emergence of Agriculture


■10.000-4500 BC, hunter gatherer societies domesticated selected species of plants and animals

•All crops we grow today have undergone extensive genetic change from their wild ancestors.


•Crops, strains and genes have moved around the globe.

The Seven Character Differences Studied by Mendel

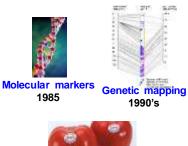
After years of working with peas (*Pisum sativum*), Mendel moved on to other crops to verify his findings. In 1866, he published his results: "Experiments on plant hybrids" in the transactions of the Natural History Society of Brünn.

Various new breeding tools have been developed to assist breeding in **the last 50** years.

From Inventions to Applications

Double helix DNA 1953 James Watson & Francis Cric

Crystallography of DNA 1958 Rosalind Franklin

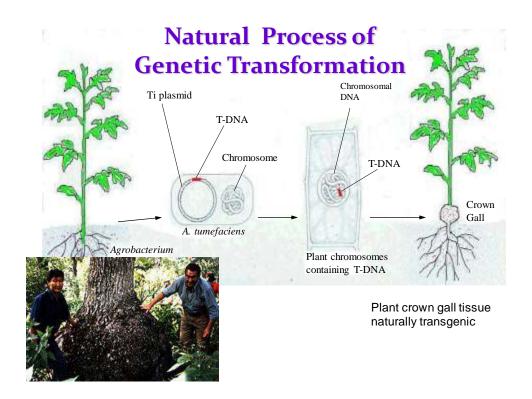


Recombinant DNA Technology 1970's-1980's

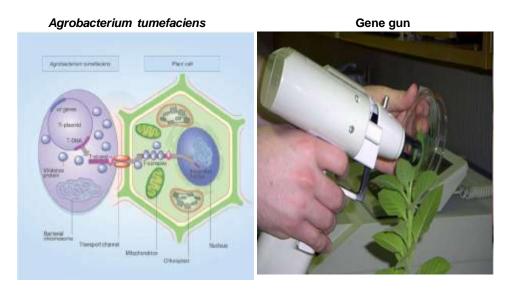
PCR 1983 Kary Mullis

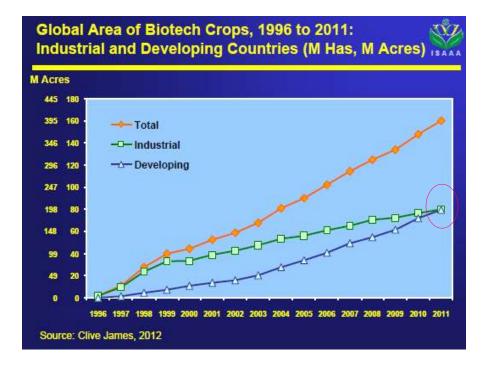
RFLP 1980's

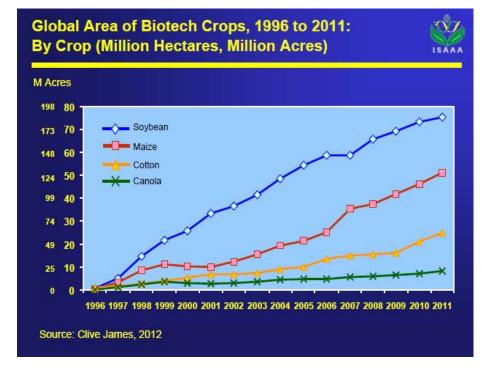
Transgenic Tomato 1994

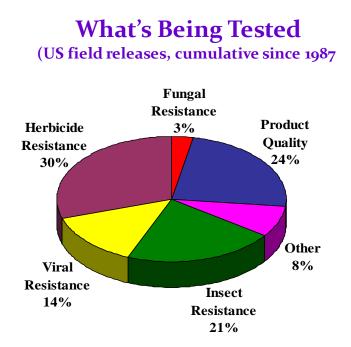


NGS Applications 2005


Genetic Engineering






How to do Gene Transformation?

Commonly Used Methods :

SOURCE: US DEPARTMENT OF AGRICULTURE

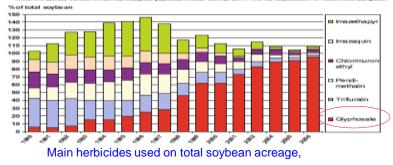
Engineered of Insect Resistance Plants

Regular corn

Regular cotton

Bt-cotton

Agenti Sustain, Dev. 34 (2006) 31-33 (2) DNRA, EDP Noteman, 2009 DOM, 50, 600 (Japan) 2007044

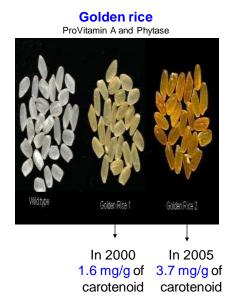

Review article

Genetically modified glyphosate-tolerant soybean in the USA: adoption factors, impacts and prospects. A review

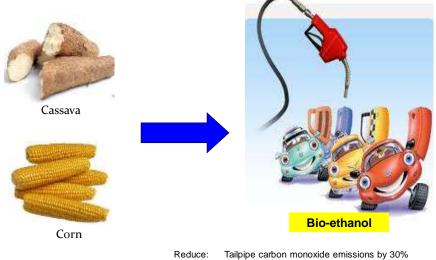
Synvac BONNY*

DRCA, UNIK Resonants publique. RIP L Compare de Catapasia. 788/08 (CREED/CD), Prance

Absenses - Transgenie verses was the solution of listed advance and construction. Discrete such construction, meanging exchange has madergoose in land expansion. Antring successful provide the mean value probability of the source companying on the other means in the other provide a successful protaining. Structure and the source of the source companying of the source is a single of the other interval and the probability of the source of the so



Early-Flowering Plum Tree



This FasTrack plum tree carries the early-flowering gene, meaning that it produces fruit in less than a year after being planted from seed, rather than the 3-10 years normally required for a seedling plum to produce fruit.

Improvement of Nutritional Qualities

GM Products for Energy

Tailpipe carbon monoxide emissions by 30% VOC (volatile organic compounds) emissions by 12% Particulate matter (PM) emissions by more than 25%

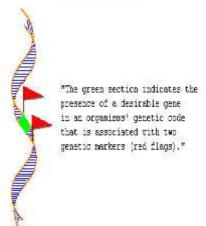
Antigen Antion Antigen Antion Anti

Some Issues of GM Products

Assessments of GM Product

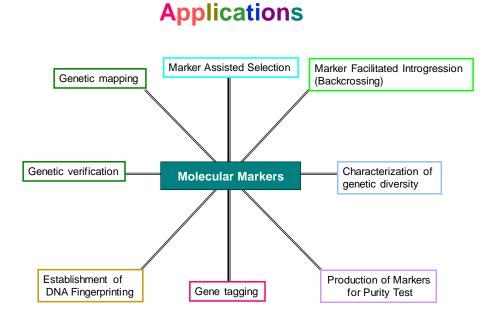
Environment

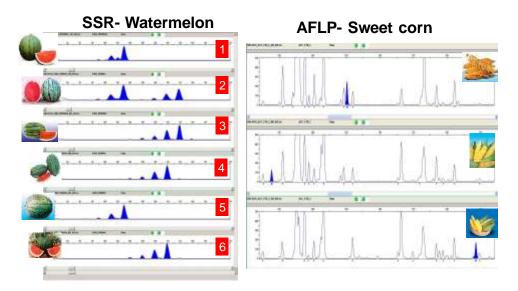
Food & Feed safety


The Biosafety Clearing House

The BCH is a mechanism set up under the Cartagena Protocol on Biosafety to facilitate the exchange of information on LMOs and assist countries that are Parties to the Protocol to better comply with their obligations.

Molecular Breeding Technology

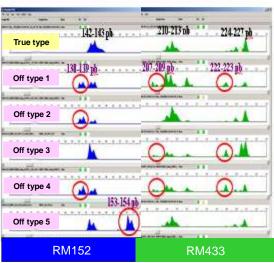

GENETIC MARKERS

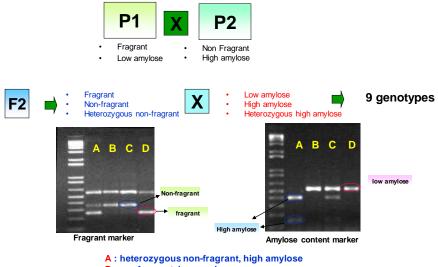


Molecular Markers:

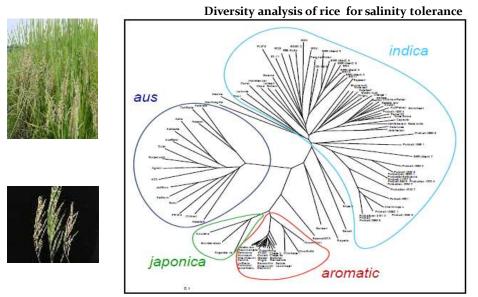
- They are identifiable DNA sequences, found at specific location of the genome, and transmitted by the standard locus of inheritance from one generation to the next
- Should not be considered as normal genes, as they usually do not have any biological effect
- "Constant landmarks in the genome"

Source: http://usda-ars-beaumont.tamu.edu/dblhelix.jpg

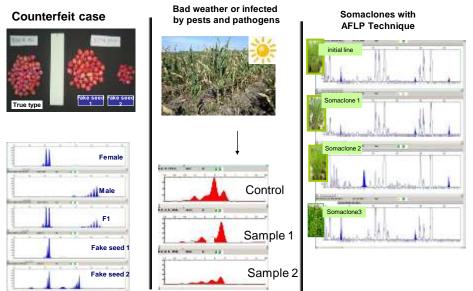



Establishment of DNA fingerprinting

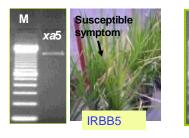
Genetic Purity Test Assessment

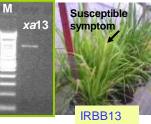


Identification of Fragrance and Amylose Content in Rice Population


- B: non-fragrant, low amylose
- C: non-fragrant, heterozygous high amylose
- D: fragrant, low amylose

Study of Genetic Diversity




Michael.J. Thompson, 2010

Verification of Genetic Identity

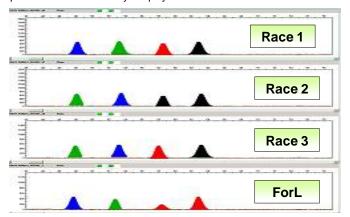
Gene Tagging of R Genes

Line	P. gapag		Race					
	R genes	1	4	9	10			
IRBB4	Xa4	R	MS	S	R			
IRBB5	xa5	R	S	R	R			
IRBB13	xa13	S	S	S	S			
IRBB21	Xa 21	R	R	MR	R			

Reaction of IRRI Lines to *Xanthomonas oryzae* pv. Oryzae Races

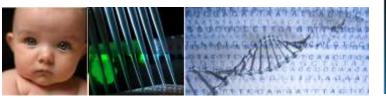
NILs	Xa-gene(s)		Race 2 PXO86		Race 3C PXO340						Race 9a PXO339	
IRBB1	Xa1	s	S	S	S	s	s	s	s	s	s	s
IRBB2	Xa2	S	s	s	S	s	s	s	s	s	s	s
IRBB3	Xa3	S	s	S	S	s	S	S	S	S	S	S
IRBB4	Xa4	R	S	S	S	MR-MS	R	S	R	R	S	R
IRBB5	xa5	R	R	R	R	S	R	S	R	R	R	R
IRBB7	Xa7	MS	R	R	R	s	R	S	R	R	S	R
IRBB8	xa8	S	S	S	S	S	MR	S	S	S	S	S
IRBB10	Xa10	S	R	S	S	s	R	S	R	S	S	S
IRBB11	Xa11	S	S	S	S	S	S	S	S	S	S	S
IRBB13	xa13	S	S	S	S	s	S	R	S	S	S	S
IRBB14	Xa14	S	S	S	S	S	R	S	S	R	S	S
IRBB21	Xa21	R	R	R	MR	R	R	MR	MR	MR	MR	S
IRBB50	Xa4+xa5	R	R	R	R	R	R	S	R	R	R	R
IRBB51	Xa4+xa13	R	S	S	S	MS	R	R	R	MR	S	R
IRBB52	Xa4+Xa21	R	R	R	MR	MR	R	MR	R	R	MR	R
IRBB55	xa13+Xa21	R	R	R	MR	R	R	R	MR	MR	MR	s
IRBB56	Xa4+xa5+xa13	R	R	R	R	R	R	MR	R	R	R	R
IRBB60	Xa4+xa5+xa13+Xa21	R	R	R	R	R	R	R	R	R	R	R
IRBB61	Xa4+xa5+Xa7	R	R	R	R	MR	R	s	R	R	R	R
IRBB62	Xa4+Xa7+Xa21	R	R	R	R	R	R	MR	R	R	MS	R
IRBB65	Xa4+Xa7+xa13+Xa21	R	R	R	R	R	R	R	R	R	MR	R

Detection of Pathogens

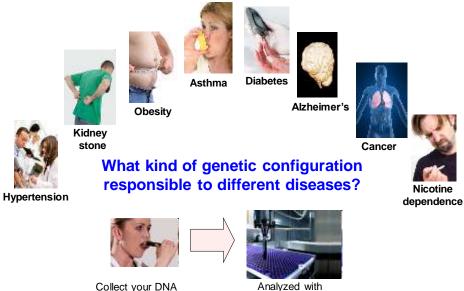

			Begenzes prolociog significant alignments:					
	ក្នុងប្រើបានប្រាស់អ្នកប្រើបានស្នាំងអ្នក	kosio	lezițin	<u>10</u>	1년 9년	<u>(im</u> 0688		
ALS NOT	7	162211	Cardade ridiçaensi sıkşı ridiçaensi stah UC 879 16	<u>19</u>	10	18		
	Land, handler, a fine the	16274	Cadade richçaensi sılışı richçaensi stah UC 367 16	Image:				
Mark The L	South the state	1351	Cadate richpeers slop epetrica parial 15 AN per,	<u>19</u>	29	13		
	16S r-DNA		BLAST Result					
C. Cá	Ca: Cg:	ee dif Colle	cg Ca Cc ferent Colletotrichum spe etotrichum acutatum oeosporoides apsici	cie	5:			

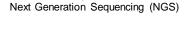
Identification of Fusarium oxysporum Races in Tomato with Specific Primer sets

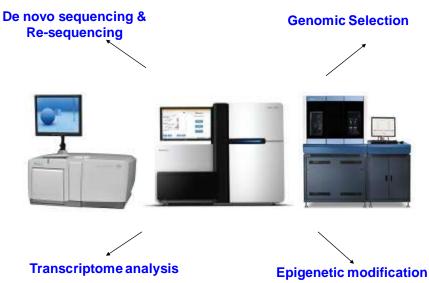
Determination of Fusarium Races based on SNaPshotTM Minisequencing procedure


Sequence alignment of endo poygalacturonase (pg1) gene and exo polygalcturonase (pgx4) gene revealed several point mutations. These markers were further employed as SNaPshot primers to simultaneously amplify SNPs associated with different races

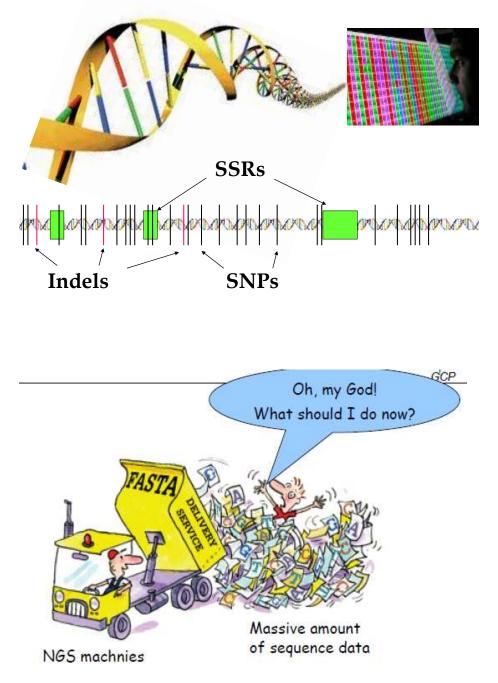
Future Perspectives

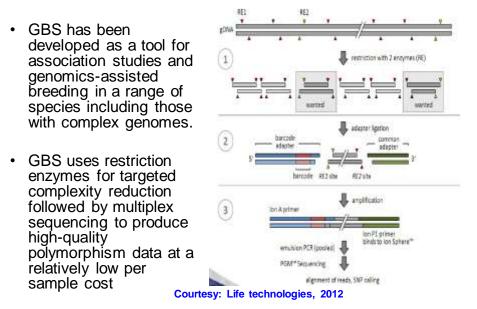

Sequencing the human genome may be the greatest accomplishment of all time in the biological sciences

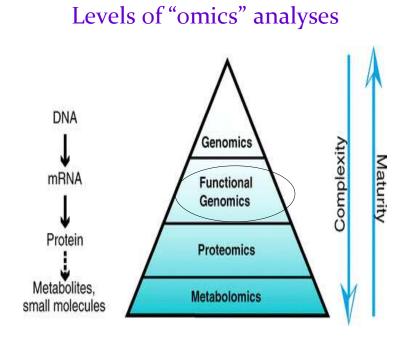

Genetic Analyzer Read length= 1000bp/run


3.3 billion base pairs= 3300 such books would be needed in order to store the complete genome.

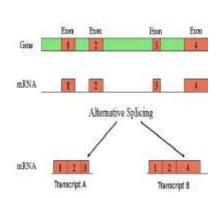
Collect your DNA




Applications of NGS for **Crop Improvement**


Whole Genome Sequencing

Molecular marker & Copy Number Variation Discovery



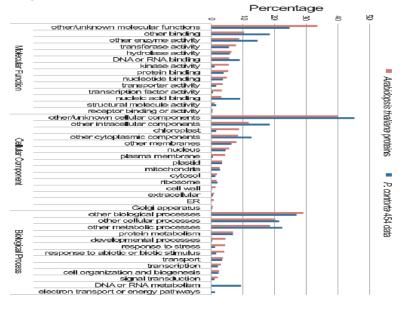
Genotyping by Sequencing (GBS)

Transcriptome Sequencing (RNA seq)

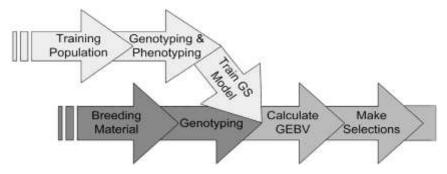
- Transcriptomes are typically 10-100 times smaller than genomes and are therefore 10-100 times cheaper to sequence
- The identified SNPs are within known expressed genes

Parchman et al. BMC Genomics 2010, 11:180 http://www.biomedcentral.com/1471-2164/11/180

RESEARCH ARTICLE



Open Access


Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery

Thomas L Parchman^{1*}, Katherine S Geist², Johan A Grahnen³, Graig W Benkman⁴, C Alex Buerkle¹

Gene ontology assignments for Lodgepole pine (*P.contorta*) & Arabidopsis thaliana

Organism	# of ESTs	# of ESTs matching RTs	% Tota	
Arabidopsis thaliana	1,527,298	920	0.0602	
Triticum aestivum	1,066,854	1,123	0.1053	
Vitis vinifera	353,941	217	0.0613	
Populus nigra	51,361	84	0.1635	
Populus tremula	37 <mark>,</mark> 313	15	0.0402	
Populus trichocarpa	89,943	94	0.1045	
Picea glauca	297,913	210	0.0705	
Picea sitchensis	168,675	54	0.0320	
Pinus pinaster	27,847	15	0.0539	
Pinus taeda	328,628	217	0.0660	
Pinus contorta	586,372	22,862	3.8989	

Genomic Selection for Breeding Value Estimation

The population of individuals with both phenotypic and genotypic data is known as the "training population" as it is used to estimate model parameters that will subsequently be used to calculate GEBVs of selection candidates (e.g., breeding lines) having only genotypic data.

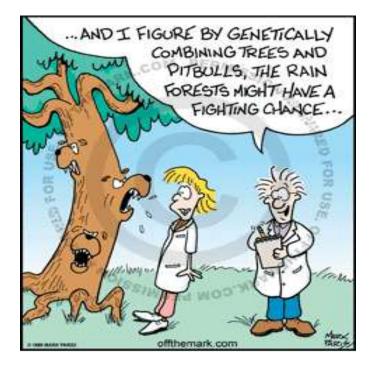
These GEBVs are then used to select the individuals for advancement in the breeding cycle. Therefore, selection of an individual without phenotypic data can be performed by using a model to predict the individual's breeding value

In Depth Study of Genetic Configuration that Compose Superior Phenotype

Which Wheat Line Is The Best Yielding? --Wheat Yield Trial - Very Expensive-Land Intensive Way to Determine Best Wheat Lines---

•Predict more winners through genomic selection •Increase likelihood & frequency of success

Courtesy: Illumina, 2010


Which Durian is better without opening it

Increase quality through genomic selection

Kesimpulan

- Tersedianya dua teknik molekuler yaitu rekayasa genetika dan molecular breding memberikan pilihan bagi pemulia tanaman dalam menentukan metode yang sesuai untuk mempercepat proses pemuliaan tanaman dan perakitan varietas baru.
- Mempertimbangkan berbagai issue, teknologi transgenik sebaiknya diaplikasikan untuk karakter yang tidak mudah diimprove secara genetik melalui pendekatan konventional karena gen yang diinginkan tidak tersedia dalam gene pools.
- Pemanfaatan teknologi NGS akan menfasilitasi pendalaman studi mengenai genome dan transcriptome tanaman, penemuan marka molekuler dan gen-gen baru serta memprediksi morfologi dari individu berdasarkan genotipenya.

Norman Borlaug, Agricultural scientist and 1970 Nobel Peace Laureate at the launch of the UN Millennium Development Goals, 2000

"I challenge the next generation to use these new scientific tools and techniques to address the problems that plague the world's poor."

